# Ticket #22452: doctest-22452-polymake3.0.9.log

File doctest-22452-polymake3.0.9.log, 11.6 KB (added by , 5 years ago) |
---|

Line | |
---|---|

1 | too few successful tests, not using stored timings |

2 | Running doctests with ID 2017-03-10-19-41-30-0b76ecd1. |

3 | Git branch: u/SimonKing/create_a_polymake_pexpect_interface |

4 | Using --optional=polymake,sage |

5 | Doctesting 1 file. |

6 | sage -t --long src/sage/interfaces/polymake.py |

7 | ********************************************************************** |

8 | File "src/sage/interfaces/polymake.py", line 236, in sage.interfaces.polymake.Polymake._function_element_class |

9 | Failed example: |

10 | p.get_schedule('F_VECTOR') # optional - polymake |

11 | Expected: |

12 | CONE_DIM : RAYS | INPUT_RAYS |

13 | precondition : BOUNDED ( POINTED : ) |

14 | POINTED : |

15 | N_INPUT_RAYS : INPUT_RAYS |

16 | precondition : ... |

17 | ... |

18 | N_RAYS : RAYS |

19 | N_FACETS : FACETS |

20 | precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM ) |

21 | F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM |

22 | Got: |

23 | CONE_DIM : RAYS | INPUT_RAYS |

24 | precondition : BOUNDED ( POINTED : ) |

25 | POINTED : |

26 | precondition : POINTED ( LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM ) |

27 | LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM |

28 | COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM |

29 | N_INPUT_RAYS : INPUT_RAYS |

30 | precondition : N_RAYS | N_INPUT_RAYS ( ppl.convex_hull.primal: FACETS, LINEAR_SPAN : RAYS | INPUT_RAYS ) |

31 | sensitivity check for FacetPerm |

32 | ppl.convex_hull.primal: FACETS, LINEAR_SPAN : RAYS | INPUT_RAYS |

33 | INPUT_RAYS_IN_FACETS : INPUT_RAYS, FACETS |

34 | sensitivity check for VertexPerm |

35 | RAYS_IN_FACETS, RAYS, LINEALITY_SPACE : INPUT_RAYS_IN_FACETS, INPUT_RAYS |

36 | GRAPH.ADJACENCY : RAYS_IN_FACETS |

37 | DUAL_GRAPH.ADJACENCY : RAYS_IN_FACETS |

38 | N_EDGES : ADJACENCY ( applied to GRAPH ) |

39 | N_EDGES : ADJACENCY ( applied to DUAL_GRAPH ) |

40 | N_FACETS : FACETS |

41 | N_RAYS : RAYS |

42 | precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM ) |

43 | F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM |

44 | ********************************************************************** |

45 | File "src/sage/interfaces/polymake.py", line 289, in sage.interfaces.polymake.Polymake._function_call_string |

46 | Failed example: |

47 | if isinstance(g, sage.interfaces.polymake.PolymakeElement): # optional - polymake |

48 | print g |

49 | else: |

50 | print g() |

51 | Exception raised: |

52 | Traceback (most recent call last): |

53 | File "/opt/sage/local/lib/python2.7/site-packages/sage/doctest/forker.py", line 498, in _run |

54 | self.compile_and_execute(example, compiler, test.globs) |

55 | File "/opt/sage/local/lib/python2.7/site-packages/sage/doctest/forker.py", line 861, in compile_and_execute |

56 | exec(compiled, globs) |

57 | File "<doctest sage.interfaces.polymake.Polymake._function_call_string[5]>", line 4, in <module> |

58 | print g() |

59 | File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/polymake.py", line 1754, in __call__ |

60 | return self._obj._check_valid().function_call(self._name, list(args), kwds) |

61 | File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/polymake.py", line 264, in function_call |

62 | return self(s) |

63 | File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/interface.py", line 259, in __call__ |

64 | return cls(self, x, name=name) |

65 | File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/expect.py", line 1388, in __init__ |

66 | raise_(TypeError, x, sys.exc_info()[2]) |

67 | File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/expect.py", line 1383, in __init__ |

68 | self._name = parent._create(value, name=name) |

69 | File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/polymake.py", line 596, in _create |

70 | self.set(name, value) |

71 | File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/polymake.py", line 632, in set |

72 | self.eval(cmd) |

73 | File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/expect.py", line 1300, in eval |

74 | for L in code.split('\n') if L != '']) |

75 | File "/opt/sage/local/lib/python2.7/site-packages/sage/interfaces/polymake.py", line 882, in _eval_line |

76 | raise PolymakeError(e) |

77 | TypeError: Can't locate object method "GENERATORS" via package "Polymake::polytope::Polytope__Rational::_prop_GROUP" at input line 1. |

78 | ********************************************************************** |

79 | File "src/sage/interfaces/polymake.py", line 658, in sage.interfaces.polymake.Polymake.help |

80 | Failed example: |

81 | print polymake.help('Polytope', pager=False) # optional - polymake |

82 | Expected: |

83 | objects/Polytope: |

84 | Not necessarily bounded or unbounded polyhedron... |

85 | Nonetheless, the name "Polytope" is used ... |

86 | ... |

87 | Got: |

88 | objects/Polytope: |

89 | Not necessarily bounded convex polyhedron, i.e., the feasible region of a linear program. |

90 | Nonetheless, the name "Polytope" is used for two reasons: Firstly, as far as the combinatorics |

91 | is concerned we always deal with polytopes; see the description of VERTICES_IN_FACETS for details. |

92 | Note that a pointed polyhedron is projectively equivalent to a polytope. |

93 | The second reason is historical. |

94 | We use homogeneous coordinates, which is why Polytope is derived from Cone. |

95 | Scalar is the numeric data type used for the coordinates. |

96 | <BLANKLINE> |

97 | Examples: |

98 | <BLANKLINE> |

99 | *) To construct a polytope as the convex hull of three points in the plane use |

100 | > $p=new Polytope(POINTS=>[[1,0,0],[1,1,0],[1,0,1]]); |

101 | > print $p->N_FACETS |

102 | 3 |

103 | Note that homogeneous coordinates are used throughout. |

104 | *) Many standard constructions are available directly. For instance, to get a regular 120-cell (which is 4-dimensional) use: |

105 | > $c=regular_120_cell(); |

106 | > print $c->VOLUME; |

107 | 1575+705r5 |

108 | This is the exact volume 1575+705*\sqrt{5}. |

109 | polymake has limited support for polytopes with non-rational coordinates. |

110 | <BLANKLINE> |

111 | ********************************************************************** |

112 | File "src/sage/interfaces/polymake.py", line 1442, in sage.interfaces.polymake.PolymakeElement.__getattr__ |

113 | Failed example: |

114 | s.get_schedule('F_VECTOR') # optional - polymake |

115 | Expected: |

116 | CONE_DIM... |

117 | ... |

118 | BOUNDED : VERTICES | POINTS, POINTED |

119 | precondition : BOUNDED ( lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS ) |

120 | lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS |

121 | ... |

122 | COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM |

123 | precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM ) |

124 | F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM |

125 | Got: |

126 | LINEAR_SPAN : RAYS | INPUT_RAYS |

127 | POINTED : RAYS |

128 | BOUNDED : VERTICES | POINTS, POINTED |

129 | precondition : BOUNDED ( lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS ) |

130 | lrs.convex_hull.count: N_FACETS : RAYS | INPUT_RAYS |

131 | precondition : POINTED ( LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM ) |

132 | LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM |

133 | CONE_DIM : CONE_AMBIENT_DIM, LINEAR_SPAN |

134 | COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM |

135 | precondition : COMBINATORIAL_DIM ( F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM ) |

136 | F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM |

137 | ********************************************************************** |

138 | File "src/sage/interfaces/polymake.py", line 1627, in sage.interfaces.polymake.PolymakeElement._sage_doc_ |

139 | Failed example: |

140 | print c._sage_doc_() # optional - polymake |

141 | Expected: |

142 | objects/Polytope: |

143 | Not necessarily bounded or unbounded polyhedron... |

144 | Nonetheless, the name "Polytope" is used ... |

145 | ... |

146 | <BLANKLINE> |

147 | objects/Polytope/specializations/Polytope<Rational>: |

148 | A rational polyhedron realized in Q^d |

149 | Got: |

150 | objects/Polytope: |

151 | Not necessarily bounded convex polyhedron, i.e., the feasible region of a linear program. |

152 | Nonetheless, the name "Polytope" is used for two reasons: Firstly, as far as the combinatorics |

153 | is concerned we always deal with polytopes; see the description of VERTICES_IN_FACETS for details. |

154 | Note that a pointed polyhedron is projectively equivalent to a polytope. |

155 | The second reason is historical. |

156 | We use homogeneous coordinates, which is why Polytope is derived from Cone. |

157 | Scalar is the numeric data type used for the coordinates. |

158 | <BLANKLINE> |

159 | Examples: |

160 | <BLANKLINE> |

161 | *) To construct a polytope as the convex hull of three points in the plane use |

162 | > $p=new Polytope(POINTS=>[[1,0,0],[1,1,0],[1,0,1]]); |

163 | > print $p->N_FACETS |

164 | 3 |

165 | Note that homogeneous coordinates are used throughout. |

166 | *) Many standard constructions are available directly. For instance, to get a regular 120-cell (which is 4-dimensional) use: |

167 | > $c=regular_120_cell(); |

168 | > print $c->VOLUME; |

169 | 1575+705r5 |

170 | This is the exact volume 1575+705*\sqrt{5}. |

171 | polymake has limited support for polytopes with non-rational coordinates. |

172 | <BLANKLINE> |

173 | objects/Polytope/specializations/Polytope<Rational>: |

174 | A rational polyhedron realized in Q^d |

175 | <BLANKLINE> |

176 | ********************************************************************** |

177 | File "src/sage/interfaces/polymake.py", line 1777, in sage.interfaces.polymake.PolymakeFunctionElement._sage_doc_ |

178 | Failed example: |

179 | print p.minkowski_sum_fukuda._sage_doc_() # optional - polymake |

180 | Expected: |

181 | functions/Producing a polytope from polytopes/minkowski_sum_fukuda: |

182 | minkowski_sum_fukuda(summands) -> Polytope<Scalar> |

183 | <BLANKLINE> |

184 | Computes the (VERTICES of the) Minkowski sum of a list of polytopes using the algorithm by Fukuda described in |

185 | Komei Fukuda, From the zonotope construction to the Minkowski addition of convex polytopes, J. Symbolic Comput., 38(4):1261-1272, 2004. |

186 | <BLANKLINE> |

187 | Arguments: |

188 | Array<Polytope<Scalar>> summands |

189 | <BLANKLINE> |

190 | Returns Polytope<Scalar> |

191 | <BLANKLINE> |

192 | Example: |

193 | > $p = minkowski_sum_fukuda([cube(2),simplex(2),cross(2)]); |

194 | > print $p->VERTICES; |

195 | 1 -2 -1 |

196 | 1 -1 -2 |

197 | 1 3 -1 |

198 | 1 3 1 |

199 | 1 2 -2 |

200 | 1 -2 2 |

201 | 1 -1 3 |

202 | 1 1 3 |

203 | Got: |

204 | functions/Producing a polytope from polytopes/minkowski_sum_fukuda: |

205 | minkowski_sum_fukuda(summands) -> Polytope<Scalar> |

206 | <BLANKLINE> |

207 | Computes the (VERTICES of the) Minkowski sum of a list of polytopes using the algorithm by Fukuda described in |

208 | Komei Fukuda, From the zonotope construction to the Minkowski addition of convex polytopes, J. Symbolic Comput., 38(4):1261-1272, 2004. |

209 | <BLANKLINE> |

210 | Arguments: |

211 | Array<Polytope<Scalar>> summands |

212 | <BLANKLINE> |

213 | Returns Polytope<Scalar> |

214 | <BLANKLINE> |

215 | Example: |

216 | <BLANKLINE> |

217 | > $p = minkowski_sum_fukuda([cube(2),simplex(2),cross(2)]); |

218 | > print $p->VERTICES; |

219 | 1 3 -1 |

220 | 1 3 1 |

221 | 1 -1 -2 |

222 | 1 1 3 |

223 | 1 -1 3 |

224 | 1 2 -2 |

225 | 1 -2 2 |

226 | 1 -2 -1 |

227 | <BLANKLINE> |

228 | ********************************************************************** |

229 | 6 items had failures: |

230 | 1 of 7 in sage.interfaces.polymake.Polymake._function_call_string |

231 | 1 of 4 in sage.interfaces.polymake.Polymake._function_element_class |

232 | 1 of 4 in sage.interfaces.polymake.Polymake.help |

233 | 1 of 12 in sage.interfaces.polymake.PolymakeElement.__getattr__ |

234 | 1 of 4 in sage.interfaces.polymake.PolymakeElement._sage_doc_ |

235 | 1 of 4 in sage.interfaces.polymake.PolymakeFunctionElement._sage_doc_ |

236 | [192 tests, 6 failures, 19.96 s] |

237 | ---------------------------------------------------------------------- |

238 | sage -t --long src/sage/interfaces/polymake.py # 6 doctests failed |

239 | ---------------------------------------------------------------------- |

240 | Total time for all tests: 24.0 seconds |

241 | cpu time: 1.1 seconds |

242 | cumulative wall time: 20.0 seconds |